Ch153a Winter 2020 Due Monday, 9 March, 2020, 5:00 PM

Problem Set 9

The room-temperature absorption spectrum of a single crystal of K₄Pt₂(H₂P₂O₅)₄•2H₂O (K₄Pt-POP) is shown to the right. Pt-POP⁴⁻ also is luminescent, displaying intense green phosphorescence with a maximum near 500 nm.

At cryogenic temperatures, the absorption spectrum of the Ba²⁺ salt of Pt-POP⁴⁻ develops rich vibrational fine structure in the lowest energy absorption band (bottom of the page). The vibrational fine structure is associated with an excited-state distortion along the Pt-Pt stretching coordinate. The vibronic peak positions for the lowest energy absorption band are given in the table on the following page.

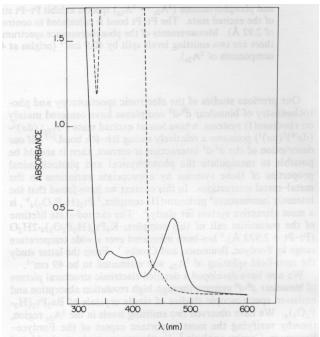
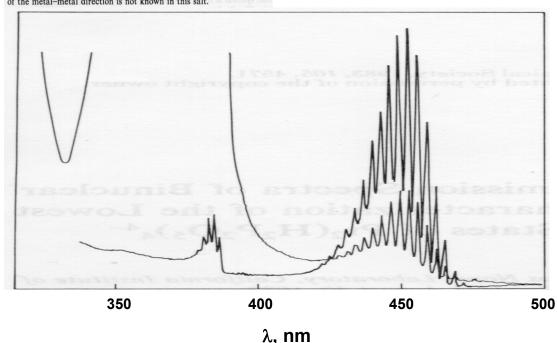
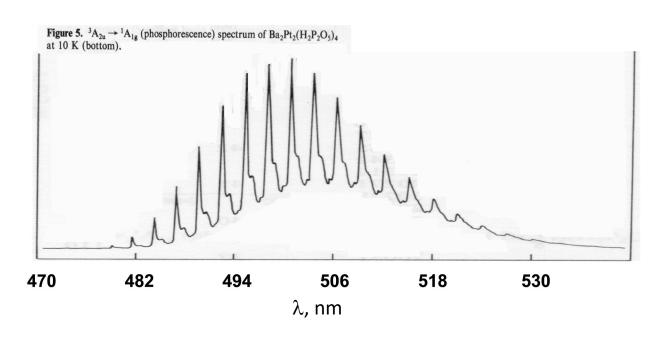



Figure 2. Absorption spectrum of a single crystal of $K_4Pt_2(H_2P_2O_5)_4$ · $2H_2O$ at 300 K. Solid line: electric dipole perpendicular to the crystallographic c axis. Dashed line: parallel to the c axis and the Pt-Pt axis.

Figure 1. Absorption spectrum along two extinction directions of the same face of a single crystal of Ba₂Pt₂(H₂P₂O₅)₄ at 5 K. The orientation of the metal-metal direction is not known in this salt.



- a. What is the vibrational frequency of the distorting mode in the excited state?
- b. What value of the Huang-Rhys parameter (S_{HR}) gives the best fit to the lowest energy absorption band?
- c. If the force constant for the Pt-Pt stretching mode is 1.0 mdyne/Å, what is the magnitude of the distortion along the Pt-Pt coordinate in the excited state?

The phosphorescence spectrum of crystalline Ba_2Pt -POP at 10 K also displays rich fine structure in the Pt-Pt vibrational mode (bottom of the page). The vibronic peak positions for the phosphorescence band are given in the table on the following page.

Ba₂Pt-POP Absorption

	•
v	λ, nm
0	476.0
1	472.5
2	469.1
3	465.7
4	462.4
5	459.2
6	456.1
7	452.9
8	449.8
9	446.7
10	443.5
11	440.4
12	437.4
13	434.4
14	431.5
15	428.7
16	425.8
17	423.2
18	420.3
19	417.5

- d. What is the vibrational frequency of the distorting mode in the ground state?
- e. What value of the Huang-Rhys parameter (S_{HR}) gives the best fit to the phosphorescence band?
- f. On the basis of your fit to the phosphorescence spectrum, what is the magnitude of the distortion along the Pt-Pt coordinate in the excited state? How does this value compare to that extracted from the fit to the absorption spectrum?
- g. The Pt-Pt distance in the ground state of Pt-POP⁴⁻ is 2.92 Å. On the basis of the structured absorption and phosphorescence band profiles, what do you estimate for the Pt-Pt distance in the excited state?

Ba₂Pt-POP Phosphorescence

V	λ, nm
0	476.5
1	479.0
2	481.6
3	484.2
4	486.8
5	489.5
6	492.3
7	495.1
8	497.8
9	500.6
10	503.3
11	506.1
12	509.1
13	512.0
14	515.0
15	517.9
16	520.9
17	523.9
18	526.9
19	530.1
20	533.3
21	536.5

- 2. Consider an iron-oxo complex LFe(O)⁺ (where L is a dianionic ligand) that undergoes electron and proton transfer reactions as described by the diagram on the right. Assume that the potentials are defined with respect to the reference electrode potential E_{ref}° .
 - a. Express $\Delta E^{\circ} \equiv E_1^{\circ} E_2^{\circ}$ as a function of $pK_{a,red}$ and $pK_{a,ox}$.
 - b. Express E_3^o as a function of E_1^o and $pK_{a,red}$.
 - c. Express E_3° as a function of E_2° and p $K_{a,ox}$.

LFe(O)⁺ + H⁺ +
$$e^{-} \xrightarrow{E_1^{\circ}}$$
 LFe(O) + H⁺

$$pK_{a,ox} \qquad pK_{a,red}$$
LFe(OH)²⁺ + $e^{-} \xrightarrow{E_2^{\circ}}$ LFe(OH)⁺

- 3. The p K_a values for alkanes are generally assumed to be ~50.
 - a. Use the value obtained for $E^{\circ}(CH_3^{\bullet/-})$ in Problem Set 8 to estimate the standard potential for the following half-reaction:

$$CH_3^{\bullet} + H^{+} + e^{-} \rightarrow CH_4$$

- b. For the LFe(O)⁺ complex of problem 2, assume that $E_1^\circ = 1.0 \text{ V}$ vs NHE, and p $K_{a,red} = 10$. Calculate the value of E_3° .
- c. On the basis of your answers to (a) and (b), would the following reaction be spontaneous?

$$LFe(O)^+ + CH_4 \rightarrow LFe(OH)^+ + CH_3^{\bullet}$$

d. If the reaction in part c is not spontaneous, what would the C-H BDE have to been in order for the following reaction to be spontaneous (assume the alkane $pK_a = 50$):

$$LFe(O)^+ + RH \rightarrow LFe(OH)^+ + R^{\bullet}$$

4. The standard free energies of formation of $CH_3OH_{(aq)}$, $H_{2(g)}$, $CH_{4(g)}$ and $H_2O_{(l)}$ are given in the Table.

	ΔG_f° (kcal mol $^{-1}$)
CH ₃ OH _(aq)	-41.7
H _{2(g)}	0
CH _{4(g)}	-12.1
H ₂ O _(I)	-56.7

a. Use the data in the Table to define the standard reduction potential for the following half reaction:

$$CH_3OH_{(aq)} + 2H^+ + 2e^- \rightarrow CH_{4(g)} + H_2O_{(I)}$$

b. Use your results from 3a and 4a to estimate the standard reduction potential for the following half reaction:

$$CH_3OH_{(aq)} + H^+ + e^- \rightarrow CH_3^{\bullet} + H_2O_{(I)}$$

c. Consider the following reaction:

$$LFe(OH)^{+} + CH_{3}^{\bullet} + H_{2}O \rightarrow Fe(OH_{2})^{+} + CH_{3}OH$$

In order for this reaction to be spontaneous, what standard potential is required for the following half-reaction:

LFe(OH)⁺ + H⁺ +
$$e^- \rightarrow$$
 Fe(OH₂)⁺