Ch153a Winter 2020 Due Monday, 9 March, 2020, 5:00 PM ## **Problem Set 9** The room-temperature absorption spectrum of a single crystal of K₄Pt₂(H₂P₂O₅)₄•2H₂O (K₄Pt-POP) is shown to the right. Pt-POP⁴⁻ also is luminescent, displaying intense green phosphorescence with a maximum near 500 nm. At cryogenic temperatures, the absorption spectrum of the Ba²⁺ salt of Pt-POP⁴⁻ develops rich vibrational fine structure in the lowest energy absorption band (bottom of the page). The vibrational fine structure is associated with an excited-state distortion along the Pt-Pt stretching coordinate. The vibronic peak positions for the lowest energy absorption band are given in the table on the following page. Figure 2. Absorption spectrum of a single crystal of $K_4Pt_2(H_2P_2O_5)_4$ · $2H_2O$ at 300 K. Solid line: electric dipole perpendicular to the crystallographic c axis. Dashed line: parallel to the c axis and the Pt-Pt axis. Figure 1. Absorption spectrum along two extinction directions of the same face of a single crystal of Ba₂Pt₂(H₂P₂O₅)₄ at 5 K. The orientation of the metal-metal direction is not known in this salt. - a. What is the vibrational frequency of the distorting mode in the excited state? - b. What value of the Huang-Rhys parameter (S_{HR}) gives the best fit to the lowest energy absorption band? - c. If the force constant for the Pt-Pt stretching mode is 1.0 mdyne/Å, what is the magnitude of the distortion along the Pt-Pt coordinate in the excited state? The phosphorescence spectrum of crystalline Ba_2Pt -POP at 10 K also displays rich fine structure in the Pt-Pt vibrational mode (bottom of the page). The vibronic peak positions for the phosphorescence band are given in the table on the following page. ## Ba₂Pt-POP Absorption | | • | |----|-------| | v | λ, nm | | 0 | 476.0 | | 1 | 472.5 | | 2 | 469.1 | | 3 | 465.7 | | 4 | 462.4 | | 5 | 459.2 | | 6 | 456.1 | | 7 | 452.9 | | 8 | 449.8 | | 9 | 446.7 | | 10 | 443.5 | | 11 | 440.4 | | 12 | 437.4 | | 13 | 434.4 | | 14 | 431.5 | | 15 | 428.7 | | 16 | 425.8 | | 17 | 423.2 | | 18 | 420.3 | | 19 | 417.5 | | | | - d. What is the vibrational frequency of the distorting mode in the ground state? - e. What value of the Huang-Rhys parameter (S_{HR}) gives the best fit to the phosphorescence band? - f. On the basis of your fit to the phosphorescence spectrum, what is the magnitude of the distortion along the Pt-Pt coordinate in the excited state? How does this value compare to that extracted from the fit to the absorption spectrum? - g. The Pt-Pt distance in the ground state of Pt-POP⁴⁻ is 2.92 Å. On the basis of the structured absorption and phosphorescence band profiles, what do you estimate for the Pt-Pt distance in the excited state? Ba₂Pt-POP Phosphorescence | V | λ, nm | |----|-------| | 0 | 476.5 | | 1 | 479.0 | | 2 | 481.6 | | 3 | 484.2 | | 4 | 486.8 | | 5 | 489.5 | | 6 | 492.3 | | 7 | 495.1 | | 8 | 497.8 | | 9 | 500.6 | | 10 | 503.3 | | 11 | 506.1 | | 12 | 509.1 | | 13 | 512.0 | | 14 | 515.0 | | 15 | 517.9 | | 16 | 520.9 | | 17 | 523.9 | | 18 | 526.9 | | 19 | 530.1 | | 20 | 533.3 | | 21 | 536.5 | | | | - 2. Consider an iron-oxo complex LFe(O)⁺ (where L is a dianionic ligand) that undergoes electron and proton transfer reactions as described by the diagram on the right. Assume that the potentials are defined with respect to the reference electrode potential E_{ref}° . - a. Express $\Delta E^{\circ} \equiv E_1^{\circ} E_2^{\circ}$ as a function of $pK_{a,red}$ and $pK_{a,ox}$. - b. Express E_3^o as a function of E_1^o and $pK_{a,red}$. - c. Express E_3° as a function of E_2° and p $K_{a,ox}$. LFe(O)⁺ + H⁺ + $$e^{-} \xrightarrow{E_1^{\circ}}$$ LFe(O) + H⁺ $$pK_{a,ox} \qquad pK_{a,red}$$ LFe(OH)²⁺ + $e^{-} \xrightarrow{E_2^{\circ}}$ LFe(OH)⁺ - 3. The p K_a values for alkanes are generally assumed to be ~50. - a. Use the value obtained for $E^{\circ}(CH_3^{\bullet/-})$ in Problem Set 8 to estimate the standard potential for the following half-reaction: $$CH_3^{\bullet} + H^{+} + e^{-} \rightarrow CH_4$$ - b. For the LFe(O)⁺ complex of problem 2, assume that $E_1^\circ = 1.0 \text{ V}$ vs NHE, and p $K_{a,red} = 10$. Calculate the value of E_3° . - c. On the basis of your answers to (a) and (b), would the following reaction be spontaneous? $$LFe(O)^+ + CH_4 \rightarrow LFe(OH)^+ + CH_3^{\bullet}$$ d. If the reaction in part c is not spontaneous, what would the C-H BDE have to been in order for the following reaction to be spontaneous (assume the alkane $pK_a = 50$): $$LFe(O)^+ + RH \rightarrow LFe(OH)^+ + R^{\bullet}$$ 4. The standard free energies of formation of $CH_3OH_{(aq)}$, $H_{2(g)}$, $CH_{4(g)}$ and $H_2O_{(l)}$ are given in the Table. | | ΔG_f° (kcal mol $^{-1}$) | |------------------------------------|--| | CH ₃ OH _(aq) | -41.7 | | H _{2(g)} | 0 | | CH _{4(g)} | -12.1 | | H ₂ O _(I) | -56.7 | a. Use the data in the Table to define the standard reduction potential for the following half reaction: $$CH_3OH_{(aq)} + 2H^+ + 2e^- \rightarrow CH_{4(g)} + H_2O_{(I)}$$ b. Use your results from 3a and 4a to estimate the standard reduction potential for the following half reaction: $$CH_3OH_{(aq)} + H^+ + e^- \rightarrow CH_3^{\bullet} + H_2O_{(I)}$$ c. Consider the following reaction: $$LFe(OH)^{+} + CH_{3}^{\bullet} + H_{2}O \rightarrow Fe(OH_{2})^{+} + CH_{3}OH$$ In order for this reaction to be spontaneous, what standard potential is required for the following half-reaction: LFe(OH)⁺ + H⁺ + $$e^- \rightarrow$$ Fe(OH₂)⁺