
Problem Set 1 Ch153a – Winter 2021 Due: 8 January, 2021

- Above 13 K, the cesium titanium(III) alum (CsTi(SO₄)₂•12H₂O) crystallizes in the cubic space group *Pa3* with four crystallographically equivalent [Ti(OH₂)₆]³⁺ cations in the unit cell. The TiO₆ unit adopts a nearly perfect octahedral structure with Ti-O distances of 2.037(1) Å and O-Ti-O angles of 90.37(2)°. Considering just the TiO₆ units, and assuming *O*_h symmetry, what is the ground state term symbol for the [Ti(OH₂)₆]³⁺ cation in this alum?
- 2) The OH₂ ligands of M(III) in CsM(SO₄)₂•12H₂O alums (M = Ti, V, Cr, Mn, Fe, Mo, Ru) have a trigonal planar geometry in which the angle between the Ti-O vector and the OH₂ plane is $0.3(1)^{\circ}$, and trans-OH₂ ligand pairs are nearly coplanar. There are three limiting orientations of the OH₂ planes. In configuration **A**, the OH₂ ligands on the x-axis lie in the xy plane; the OH₂ ligands on the y-axis lie in the yz plane; and the OH₂ ligands on the z-axis lie in the xz plane. In configuration **B**, the OH₂ ligands on the x-axis are rotated 45° counterclockwise (positive angle) about the x-axis as viewed from the positive x direction; the OH₂ ligands on the y-axis are rotated 45° counterclockwise (positive angle) about the y-axis as viewed from the positive y direction; and the OH₂ ligands on the z-axis are rotated 45° counterclockwise (positive angle) about the z-axis as viewed from the positive z direction. In configuration **C**, the OH₂ ligands on the x-axis are rotated 45° clockwise (negative angle) about the x-axis as viewed from the positive x direction; the OH_2 ligands on the y-axis are rotated 45° clockwise (negative angle) about the y-axis as viewed from the positive y direction; and the OH₂ ligands on the z-axis are rotated 45° clockwise (negative angle) about the z-axis as viewed from the positive z direction. MATLAB *.fig files of the three configurations are posted on the course website (https://www.bilrc.caltech.edu/Ch153a 2021/Ch153.html). You might find it easier to visualize the structures if you view these files in MATLAB.

- a) What are the point groups of configurations A, B, and C?
- b) Give the ground state term for a $[Ti(OH_2)_6]^{3+}$ cation in each configuration (neglecting spin-orbit coupling). Explain each answer on the basis of a simple ligand-field orbital diagram.
- c) Draw a qualitative correlation diagram showing the energies of the lowest states in $[Ti(OH_2)_6]^{3+}$ as the OH₂ rotation angle increases from $-\pi/4$ to $+\pi/4$ (neglecting spin-orbit coupling).
- d) The rotation angle of the OH₂ plane in CsTi(SO₄)₂•12H₂O is −20.4(1)°. Identify the point group for this configuration and predict the ground state term symbol for the [Ti(OH₂)₆]³⁺ cation in this alum (neglecting spin-orbit coupling).

e) In the CsM(SO₄)₂•12H₂O (M = Co, Rh, Ir) alums, the OH₂ ligands adopt a pyramidal geometry rather than trigonal planar. Suggest an explanation for the difference on the basis of the electronic structures of the M(III)-aquo ions.