Problem Set 2 Ch 153a – Winter 2021 Due 15 January, 2021

- 1) Construct a diagram illustrating the dependence of electrode potentials (*vs.* NHE) on pH (Pourbaix diagram) for the following redox couples:
 - a) $O_2 + e^- + H^+ \rightarrow HO_2^{\bullet}$
 - b) $HO_2^{\bullet} + e^- + H^+ \rightarrow H_2O_2$
 - c) $H_2O_2 + e^- + H^+ \rightarrow HO^{\bullet} + H_2O$
 - d) $HO^{\bullet} + e^- + H^+ \rightarrow H_2O$
 - e) $O_2 + 2e^- + 2H^+ \rightarrow H_2O_2$
 - f) $H_2O_2 + 2e^- + 2H^+ \rightarrow 2H_2O$
 - g) $O_2 + 4e^- + 4H^+ \rightarrow 2H_2O$

In constructing your diagram, use the following standard potentials:

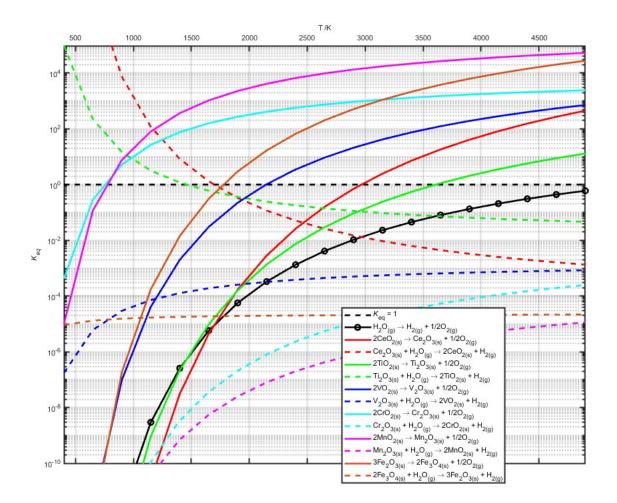
$O_2 + e^- \rightarrow O_2^{\bullet-}$	$E^{\circ} = -0.35 \text{ V} \text{ vs. NHE}$
$\mathrm{HO_2}^{\bullet} + e^- \rightarrow \mathrm{HO_2}^-$	<i>E</i> ° = 0.76 V <i>vs.</i> NHE
$\mathrm{H}_{2}\mathrm{O}_{2} + e^{-} + \mathrm{H}^{+} \rightarrow \mathrm{HO}^{\bullet} + \mathrm{H}_{2}\mathrm{O}$	<i>E</i> ° = 0.80 V <i>vs.</i> NHE
$HO^{\bullet} + e^{-} + H^{+} \rightarrow H_{2}O$	<i>E</i> ° = 2.72 V <i>vs.</i> NHE;

and the following pK_a values:

$\mathrm{HO}_{2}^{\bullet} \rightarrow \mathrm{O}_{2}^{\bullet-} + \mathrm{H}^{+}$	p <i>K</i> _a = 4.8
$H_2O_2 \rightarrow HO_2^- + H^+$	р <i>К</i> а = 11.62
$\mathrm{HO}^{\bullet} \rightarrow \mathrm{O}^{\bullet-} + \mathrm{H}^{+}$	р <i>К</i> а = 11.7
$H_2O \rightarrow HO^- + H^+$	р <i>К</i> а = 14.0

The standard state for potentials is 25 °C, concentrations of 1 molal (1 m), partial gas pressures of 100 kPa, and the activity of water is taken to be unity. For the purposes of your diagram, assume the following conditions:

```
pO_2 = 100 \text{ kPa}
[HO_2^{\bullet}] + [O_2^{\bullet-}] = 1 m
[H_2O_2] + [HO_2^{-}] = 1 m
[HO^{\bullet}] + [O^{\bullet-}] = 1 m
```


Your plot should span the range from pH 0 to pH 14.

2) Using the data from your Pourbaix diagram give the electrode potentials for the redox couples *a*-*g* at the following pH values:

- a. pH0 b. pH7 c. pH14
- 3) Using the data from your Pourbaix diagram determine the standard free energy change for the following reaction:

 $2HO^{\bullet} \Longrightarrow H_2O_2$

- 4) Consider the H₂ and O₂ evolution reactions of several metal oxides depicted in the plot below.
 - a) Identify which reactions are endothermic and which are exothermic.
 - b) Identify the algebraic sign of the entropy change for each reaction.
 - c) Which reaction has the smallest value of $|\Delta H^{\circ}|$?
 - d) Which metal oxide pair(s) might be used in a thermal water-splitting cycle? Explain your reasoning.

