Problem Set 5

Ch 153a - Winter 2021

Due: 5 February, 2021

1) As discussed in class, the oxo wall for tetrahedral MO_4^{n-} and tetragonal $(C_{4\nu})$ OML₅ complexes lies between groups 8 and 9 in the transition series elements. Consider the metal-ligand multiply bonded complex geometries shown to the right. Assume that E atoms have two filled $p\pi$ and one filled $p\sigma$

donor orbital, and that each L ligand has one filled $p\sigma$ donor orbital.

- a) For each of the three complex geometries, develop a molecular orbital bonding model using five metal *d* orbitals, and the ligand orbitals described above.
- b) For each of the three complex geometries, determine the location of the multiply-bonded-ligand wall. Explain your reasoning.
- c) For each of the three complex geometries, determine the M-E bond order for every d^n configuration from n = 0 to the maximum value of n that is consistent with your positioning of the wall.
- 2) The Ru(bpy)₃²⁺ ion (bpy = 2,2'-bipyridine) has a luminescent MLCT excited state $(*Ru(bpy)_3^{2+})$ that decays with a time constant of about 600 ns in aqueous solution. The energy difference between the minimum of the ground-state potential energy surface and that of $*Ru(bpy)_3^{2+}$ is approximately 2.0 eV.

The Ru(bpy) $_3^{2+}$ ion also can undergo one-electron oxidation and reduction reactions. The relevant reduction potentials are:

$$E^{\circ}(\text{Ru}(\text{bpy})_3^{3+}/\text{Ru}(\text{bpy})_3^{2+}) = 1.25 \text{ V } vs. \text{ NHE}$$

 $E^{\circ}(\text{Ru}(\text{bpy})_3^{2+}/\text{Ru}(\text{bpy})_3^{+}) = -1.25 \text{ V } vs. \text{ NHE}$

- a) What is the standard free-energy change for the reaction between $Ru(bpy)_3^+$ and $Ru(bpy)_3^{3+}$.
- b) Estimate the formal potential for the *Ru(bpy)₃²⁺ + $e^- \rightarrow$ Ru(bpy)₃⁺ half reaction.
- c) Estimate the formal potential for the $Ru(bpy)_3^{3+} + e^- \rightarrow *Ru(bpy)_3^{2+}$ half reaction.
- d) Do you expect anything unusual to occur when Ru(bpy)₃⁺ reacts with Ru(bpy)₃³⁺?

3) The spectrum of solar energy striking the earth and the absorbance spectrum of $Ru(bpy)_3^{2+}$ are shown below. Excel spreadsheets of these two spectra are available on the Ch153a website. The units of spectral irradiance are: $W m^{-2} nm^{-1}$. The $Ru(bpy)_3^{2+}$ spectrum is given in molar absorbance units: $M^{-1} cm^{-1}$.

- a) Make an overlay plot of the solar spectrum in which one plot has units of J s⁻¹ m⁻² nm⁻¹, and the other has units of photons s⁻¹ m⁻² nm⁻¹. Normalize both plots so that the peak in each spectrum is equal to one.
- b) If photon energies of at least 1.23 eV are required to split water into H₂ and O₂, what fraction of the solar energy incident on the earth can be used to drive this reaction? What fraction of the photons incident on the earth can be used?
- c) Assume that the solar flux is incident on a 10^{-4} M solution of Ru(bpy)₃²⁺. The cross-sectional area of the solution is 1 cm² and the path length of the solution is 1 cm. What fraction of the energy incident on the solution is absorbed by the Ru(bpy)₃²⁺ ions? What fraction of the incident photons are absorbed by the Ru(bpy)₃²⁺ ions? For a sample of the same size, plot the fractions of incident energy and incident photons absorbed as functions of Ru(bpy)₃²⁺ concentration between 10^{-4} and 10^{-3} M.