
 

 

 
Problem Set 8 

Ch 153a – Winter 2021 

Due: 26 February, 2021 

 
1) The three ferric hexacyanometallates, Prussian blue, ruthenium purple, and osmium 

purple (Fe4[M(CN)6]3xH2O, M = Fe, Ru, Os) are prepared by mixing solutions of the 
corresponding hexacyanometallates with a ferric perchlorate solution.  The general 
structure of the three compounds is shown below.   

 

 

The absorption spectra (next page) of the hexacyano-metallates are shown in the 
upper panel, and the spectra of the ferric-hexacyano-metallates appear in the lower 
panel. 



 

 

 

Propose assignments for the absorption bands in the ferric-hexacyano-metallates 
spectra.  Explain your reasoning. 

 

2) The intensity of an intervalence charge transfer (IVCT) absorption band is related to 
the strength of the electronic coupling between the electron donor and acceptor. In 
this problem, you will derive the following expression for the square of the transition 
moment integral (

2

12


) for IVCT absorption:  



 

 

where HDA is an electronic coupling matrix element, e(esu = statC = erg1/2 cm1/2) is 
the unit electronic charge, rDA is the donor-acceptor distance,  secergh ) is 

Planck’s constant, c(cm sec−1) is the speed of light, and  1
max cm  is the frequency 

of the IVCT absorbance maximum.  

Assume that you have an electron donor in close proximity to an electron acceptor 
(D|A).  We will consider just the ground state (D|A) and a charge-transfer excited 
state (D+|A).  We can define zero-order wavefunctions for the two states: 

The function D  is the HOMO on D; 
A

 is the LUMO on A; 
D

 describes the core 

electrons on D+; and A  is the function for the core electrons on A.  We assume that 

g and e are real, normalized, 

and orthogonal, 

If D and A interact weakly with one another, the wave functions will be perturbed 
slightly: 

The transition moment integral for the GE excitation is given by: 

a) Derive an expression for GE


 as a function of e, , , the average positions of 

electrons in orbitals 2 through n ( niri 


2,  ), the average position of an 

electron in D  (   11 rdrr DDD


), the average position of an electron in 

A
         

(    11 rdrr
AAA


),  and    11 rdrr

ADDA


. 
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b) The Hamiltonian for the perturbed system is H = Ho + H1, and the following 
equations are assumed to be valid: 

;; oo eeeggg HH   

  dHEEH gggggGGGG 1;  

  dHEEH eeeeeEEEE 1;  

Substitute for H, G, and EG in the Schrödinger equation, left-multiply by e, then 
integrate over all space to obtain an expression for  in terms of EE, EG, and 

  dHdHH geegDA 11 . 

c) Substitute for H, E, and EE in the Schrödinger equation, left-multiply by g, then 
integrate over all space to obtain an expression for  in terms of EE, EG, and HDA. 

d) Substitute your expressions for  and  into your result from part (a).  Compare 
this result to the expression for 

2

12


 given above.  Explain what assumptions 

and/or approximations are necessary to make your expression for 
2

GE


 match 

that for 
2

12


.  Can you provide justifications for these assumptions and/or 

approximations? 

3) Consider a collimated beam of light impinging on 
an absorbing sample of thickness dx and cross-
sectional area yz, as shown to the right.  
Assume that that incident beam has spectral 

irradiance .
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The rate per wavenumber interval at which excited molecules in the sample volume 
are produced is given by: 

where ng is the concentration of molecules in the ground state; )~(  is the radiant 
energy density per wavenumber interval; Bge is the Einstein coefficient for induced 
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ge absorption; and )~(g  is an absorption bandshape function obeying the 

normalization condition: .1~)~( 



dg  

a) Derive an expression for 




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 cmcmcm

erg
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dI 111

sec

)~(
12

in terms of ng, )~( , ~ , Bge, 

),~(g  Planck’s constant (  secergh ) , and the speed of light, c.  Demonstrate 
that your result has the proper units. 

b) Beer’s law can be derived from the following differential equation, 
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molecules and )~(  is a molar absorption coefficient.  You are probably more 
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c) Use the results from parts (a) and (b), and the relationship between the spectral 

irradiance and the energy density, ),~()~(  cI  to derive an expression for 


~

)~(
 

as a function of Avogadro’s number ( 







mole

molecules
NA ), h, Bge, and ).~(g  

d) The semi-classical formulation of the Franck-Condon principle for transitions from 
a harmonic ground-state surface to a harmonic excited state surface predicts a 
band shape of the form: 

where (erg) is the reorganization energy, E00(erg) is the energy difference 

between the minima of the two harmonic surfaces, 




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K

erg
R  is the gas constant, 

and T(K) is the absolute temperature. If the bandshape is narrow relative to ,~
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then .~~
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 Use this approximation, the result from part (c), and the 

)~(g  normalization condition to derive an expression for max  as a function of NA, 

h, Bge, c, , R, T, and .~
max   Your expression should not contain any explicit 

dependence on ~  or ).~(g  



























RT

Ehc

4

)~(
exp~

)~(
~

)~( 2
00

max



 

 

e) Use the semi-classical bandshape function to derive an expression for ,~
2

1  the 

full width of the band at half-maximum, as a function of h, c, , R, and T. 

f) A Golden-Rule treatment of the ge radiative transition probability defines Bge in 
terms of the transition moment integral, 12 : 

Demonstrate that this expression gives the same units for Bge as those above. 
Use this expression and the results from parts (d) and (e) to express max  as a 

function of h, c, NA, 12 , ,~
max  and .~

2
1  

g) In Problem 2 you showed that a perturbation theory treatment of (intervalence) 
charge-transfer absorption predicts that 12  will depend on the electronic 
coupling matrix element between donor and acceptor (HDA(erg)), the distance 
between donor and acceptor (rDA(cm)), and ,~

max  according to the expression: 

where e (esu = statC = erg1/2 cm1/2) is the unit electronic charge.  Use this 
definition to derive an expression for max  as a function of NA, h, c, e, rDA, HDA,

,~
2

1  and .~
max  

h) Evaluate the constants in your expression to derive the following result: 

where rDA is expressed in Å units, and HDA, ,~
max  and 

2
1

~  are expressed in cm1 

units. 
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