Problem Set 1

Ch153a - Winter 2022

Due: 7 January 2022

1) When a solution of 0.024 M CoSO₄ in 0.48 M H₂SO₄ at a pressure of 25 MPa is heated to 625 K the intensity of the main visible absorption band increases and the maximum shifts to lower energy (Figure 1). The change in the absorption spectrum is attributed to the following transformation:

Figure 1. (a) Absorption spectra of 0.024 M CoSO_4 in $0.48 \text{ M H}_2\text{SO}_4$ at a pressure of 25 MPa at the indicated temperatures. (b) Difference spectra produced by subtracting the 291 K spectrum from the spectrum measured at the indicated temperature. All spectra corrected for solvent expansion.

In working on the following problems, consider just the d-orbital manifold and assume that $Co(OH_2)_6{}^{2+}$ has O_h symmetry and $Co(OH_2)_4{}^{2+}$ has T_d symmetry. Term symbols are used to describe electronic states of atoms and molecules. For atoms in the Russell-Saunders coupling limit, term symbols have the form: ${}^{2S+1}L$, where S is the total spin angular momentum quantum number and L is a letter corresponding to the orbital angular momentum of the state (i.e., S, L = 0; P, L = 1, D, L = 2, F, L = 3, ...). For molecular electronic states, term symbols have the form: ${}^{2S+1}\Gamma$, where Γ is the uppercase letter of the irreducible representation that describes the symmetry properties of the spatial part of the electronic state wavefunction (e.g., A_{1g} , E_g , T_{1g} , T_{2g} , ...).

- a) Give the term symbols and strong-field electronic configurations for all quartet (i.e., S=3/2) states in $Co(OH_2)_6^{2+}$.
- b) Give the term symbols and strong-field electronic configurations for all quartet (i.e., S=3/2) states in $Co(OH_2)_4^{2+}$.
- c) In the strong-field limit, compare the ligand field stabilization energies of the Co(OH₂)₆²⁺ and Co(OH₂)₄²⁺ ground states (assume that Δ_t = (4/9) Δ_o). Define the *d*-orbital energy splittings as follows: Δ_o in O_h and Δ_t in T_d .

2) The strong-field energy matrix for the quartet states of $Co(OH_2)_6^{2+}$ is given below:

	$\phi_1[(t_{2g})^5(e_g)^2]$	$\phi_2[(t_{2g})^4(e_g)^3]$	$\phi_3[(t_{2g})^4(e_g)^3]$	$\phi_4[(t_{2g})^3(e_g)^4]$
$\phi_1[(t_{2g})^5(e_g)^2]$	21A-40B+14C-0.8Δ _o	6B	0	0
$\phi_2[(t_{2g})^4(e_g)^3]$	6B	21A-31B+14C+0.2Δ _o	0	0
$\phi_3[(t_{2g})^4(e_g)^3]$	0	0	21A-43B+14C+0.2Δ _o	0
$\phi_4[(t_{2g})^3(e_g)^4]$	0	0	0	21A-43B+14C+1.2Δ _o

The parameters A, B, and C are the Racah electron-electron repulsion parameters.

Make a strong-field energy matrix for the quartet states of $Co(OH_2)_4^{2+}$.

- 3) In the weak-field limit, the ligand field is treated as a perturbation on the free-ion states. For the Co²⁺ ion, there are two quartet states: ⁴F and ⁴P.
 - a) Using the energy matrix for $Co(OH_2)_6^{2+}$ in the limit of $\Delta_0 \rightarrow 0$, determine the energies of the 4F and 4P states in terms of A, B, and C.
 - b) Determine the energies of the quartet states of $Co(OH_2)_6^{2+}$ in the weak-field limit.
 - c) Determine the energies of the quartet states of $Co(OH_2)_4^{2+}$ in the weak-field limit.
 - d) Compare the ligand field stabilization energies of the ground states of $Co(OH_2)_6^{2+}$ and $Co(OH_2)_4^{2+}$ in the weak-field limit (assume that $\Delta_t = (4/9) \Delta_o$).
- 4) Does the weak-field or strong-field limit seem more appropriate for Co²⁺ aquo ions? Explain your answer.