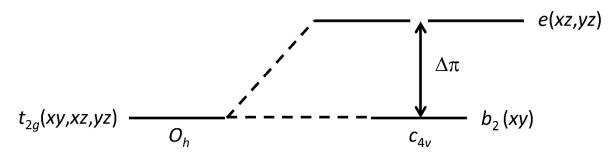
Problem Set 2


Ch153a - Winter 2023

Due: 13 January 2023

- 1a. Construct an MO diagram for $C_{4\nu}$ [L₅MO]ⁿ⁺ (L is an uncharged ligand, for example, H₂O or NH₃) using the following orbitals: five metal 3d orbitals, one set of five ligand σ orbitals, and the oxo σ + 2p π orbitals.
- b. Predict the ground state electronic configuration and the metal-oxo bond order for each of the following:

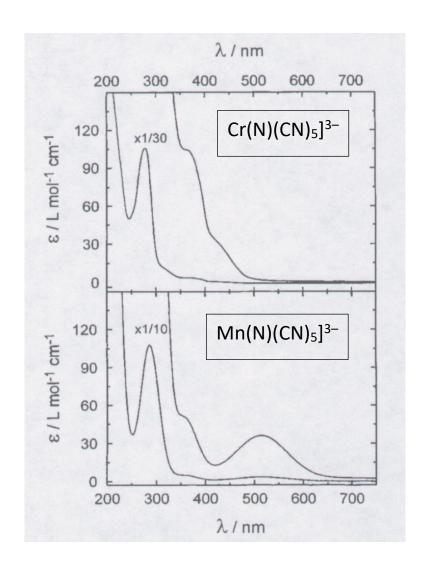
$[L_5VO]^{2+}$	VIV	d^{1}
[L ₅ CrO] ³ +	Cr ^V	d^{1}
$[L_5CrO]^{2+}$	Cr ^{IV}	d^2
[L ₅ MnO] ³⁺	Mn ^v	d^2
[L ₅ MnO] ²⁺	Mn ^{IV}	d ³
[L ₅ FeO] ²⁺	Fe ^{IV}	d ⁴

- c. Do you think that $[L_5CoO]^{2+}$ is a stable complex? Why or why not?
- 2. Electronic Structure and Spectra of Metal Oxo and Nitrido Complexes

The $d\pi$ -orbital splitting for a tetragonal oxo- or nitrido-metal complex is shown above.

The following states arise from the d^1 , d^2 , and d^3 configurations in this scheme:

$$\begin{array}{lll} d^1: & & & \\ {}^2E[(xz,yz)^1] & & & E=\Delta_\pi\\ {}^2B_2[(xy)^1] & & E=0\\ \\ d^2: & & & \\ {}^3A_2[(xz,yz)^2] & & E=2\Delta_\pi+A-5B\\ {}^1A_1[(xz,yz)^2] & & E=2\Delta_\pi+A+7B+4C\\ {}^1B_1[(xz,yz)^2] & & E=2\Delta_\pi+A+B+2C\\ {}^1B_2[(xz,yz)^2] & & E=2\Delta_\pi+A+B+2C\\ {}^1B_2[(xy,yz)^2] & & E=\Delta_\pi+A+B+2C\\ {}^1E[(xy)^1(xz,yz)^1] & & E=\Delta_\pi+A+B+2C\\ {}^3E[(xy)^1(xz,yz)^1] & & E=\Delta_\pi+A-5B\\ {}^1A_1[(xy)^2] & & E=A+4B+3C\\ \end{array}$$


```
\begin{array}{ll} d^3 \colon \\ {}^2 E[(xz,yz)^3] & E = 3\Delta_\pi + 3A - 3B + 4C \\ {}^4 B_1[(xy)^1(xz,yz)^2] & E = 2\Delta_\pi + 3A - 15B \\ {}^2 B_1[(xy)^1(xz,yz)^2] & E = 2\Delta_\pi + 3A - 6B + 3C \\ {}^2 A_1[(xy)^1(xz,yz)^2] & E = 2\Delta_\pi + 3A - 6B + 3C \\ {}^2 B_2[(xy)^1(xz,yz)^2] & E = 2\Delta_\pi + 3A + 5C \\ {}^2 A_2[(xy)^1(xz,yz)^2] & E = 2\Delta_\pi + 3A - 6B + 3C \\ {}^2 E[(xy)^2(xz,yz)^1] & E = \Delta_\pi + 3A - 3B + 4C \end{array}
```

The absorption spectra of $Cr^{V}(N)(CN)_{5}^{3-}$ and $Mn^{V}(N)(CN)_{5}^{3-}$ are shown below.

In $Cr^{V}(N)(CN)_{5}^{3-}$, the ${}^{2}B_{2}[(xy)] \rightarrow {}^{2}E[(xz,yz)]$ absorption band is at 23,300 cm⁻¹.

In Mn^V(N)(CN)₅³⁻, the 1 A₁[(xy)²] \rightarrow 1 E[(xy)(xz,yz)] absorption band is at 19,400 cm⁻¹.

Use the foregoing orbital splitting diagram and the state energies to determine the values of Δ_{π} in the Cr and Mn complexes. Assume that $B = 500 \text{ cm}^{-1}$ and C/B = 4.



3. Spin Crossover in d² and d³ Oxo- and Nitrido Complexes

The value of Δ_{π} is not the same in all of the states of a d^2 or d^3 nitrido or oxo complex. The M \equiv N (or M \equiv O) bond should be longer in a $(xy)^1(xz,yz)^1$ excited state than in the $(xy)^2$ ground state. Consequently, in the relaxed $(xy)^1(xz,yz)^1$ excited state, Δ_{π} will be smaller than it was in the ground state.

You can estimate the change in Δ_{π} from the shape of the absorption band. In Mn^V(N)(CN)₅³⁻, the parameter λ is about 3,400 cm⁻¹. So if E_{abs} = 19,400 cm⁻¹, then E_{em} = 12,600 cm⁻¹. The energy gap between ³E and ¹A₁ is Δ_{π} – 9B –3C $\approx \Delta_{\pi}$ – 21B.

For thermal population of a high-spin state, the relevant energy is E_{TH} (or E_{00}), which is less than the vertical energy difference: $E_{TH} = E_{abs} - \lambda$.

- a. Find the Δ_{π} values at the high-spin/low-spin crossover points for d^2 and d^3 tetragonal oxo- and nitrido-metal complexes. Assume that B = 500 cm⁻¹ and C/B = 4.
- b. Assume that you have a high-spin/low-spin equilibrium in a d^2 tetragonal oxo- or nitrido-metal complex in which $E_{TH}=0$. What are the Δ_{π} values for high- and low-spin forms?
- c. Assume that you have a high-spin/low-spin equilibrium in a d^3 tetragonal oxo- and nitrido-metal complex in which $E_{TH}=0$. What are the Δ_{π} values for high- and low-spin forms?
- d. What are the relative populations of the high- and low-spin states in problems (b) and (c)?
- e. Karl Wieghardt reported (*Angew. Chem. Int. Ed.* **2005**, *44*, 2908-2912) that, *unexpectedly*, the ground-state total spin of the [(cyclam-acetato)Fe^V(N)]⁺ core is S=1/2 and not S=3/2. Discuss whether you think that this result is "unexpected".