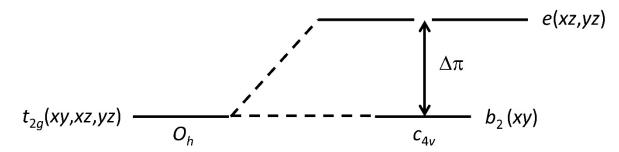
Problem Set 3

Ch153a - Winter 2025

Due: 31 January 2025

1. (50 points) Spin Crossover in d² and d³ Oxo- and Nitrido Complexes

The $d\pi$ -orbital splitting for a tetragonal oxo- or nitrido-metal complex is shown below.



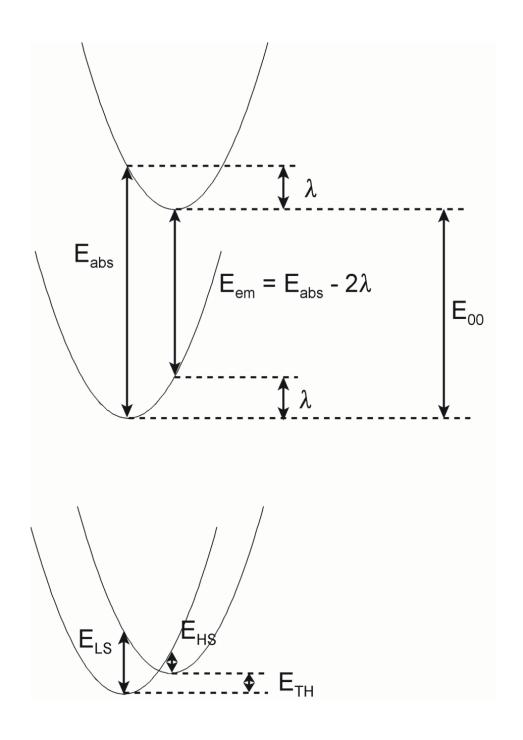
The value of Δ_{π} is not the same in all of the states of a d^2 or d^3 nitrido or oxo complex. The M=N (or M=O) bond should be longer in a $(xy)^1(xz,yz)^1$ excited state than in the $(xy)^2$ ground state. Consequently, in the relaxed $(xy)^1(xz,yz)^1$ excited state, Δ_{π} will be smaller than it was in the ground state.

The following states and energies arise from the d^2 , and d^3 configurations in this scheme:

 d^2 : ${}^{3}A_{2}[(xz,yz)^{2}]$ $E = 2\Delta_{\pi} + A - 5B$ $^{1}A_{1}[(xz,yz)^{2}]$ $E = 2\Delta_{\pi} + A + 7B + 4C$ $^{1}B_{1}[(xz,yz)^{2}]$ $E = 2\Delta_{\pi} + A + B + 2C$ $^{1}B_{2}[(xz,yz)^{2}]$ $E = 2\Delta_{\pi} + A + B + 2C$ $E = \Delta_{\pi} + A + B + 2C$ $^{1}E[(xy)^{1}(xz,yz)^{1}]$ $^{3}E[(xy)^{1}(xz,yz)^{1}]$ $E = \Delta_{\pi} + A - 5B$ E = A + 4B + 3C $^{1}A_{1}[(xy)^{2}]$ d^3 : $^{2}E[(xz,yz)^{3}]$ $E = 3\Delta_{\pi} + 3A - 3B + 4C$ $^{4}B_{1}[(xy)^{1}(xz,yz)^{2}]$ $E = 2\Delta_{\pi} + 3A - 15B$ ${}^{2}B_{1}[(xy)^{1}(xz,yz)^{2}]$ $E = 2\Delta_{\pi} + 3A - 6B + 3C$ ${}^{2}A_{1}[(xy)^{1}(xz,yz)^{2}]$ $E = 2\Delta_{\pi} + 3A - 6B + 3C$ $^{2}B_{2}[(xy)^{1}(xz,yz)^{2}]$ $E = 2\Delta_{\pi} + 3A + 5C$ $^{2}A_{2}[(xy)^{1}(xz,yz)^{2}]$ $E = 2\Delta_{\pi} + 3A - 6B + 3C$ $E = \Delta_{\pi} + 3A - 3B + 4C$ ${}^{2}E[(xy)^{2}(xz,yz)^{1}]$

You can estimate the change in Δ_{π} from the shape of the absorption band. In Mn^V(N)(CN)₅³⁻, the parameter λ is about 3,400 cm⁻¹. So, if E_{abs} = 19,400 cm⁻¹, then E_{em} = 12,600 cm⁻¹. The energy gap between ³E and ¹A₁ is $\Delta_{\pi} - 9B - 3C \approx \Delta_{\pi} - 21B$.

Refer to the graphic below. For thermal population of a high-spin state, the relevant energy is E_{TH} (or E_{00}), which is less than the vertical energy difference: E_{TH} = E_{abs} – λ .



- a. Find the Δ_{π} values at the high-spin/low-spin crossover points for d^2 and d^3 tetragonal oxo- and nitrido-metal complexes. Assume that B = 500 cm⁻¹ and C/B = 4.
- b. Assume that you have a high-spin/low-spin equilibrium in a d^2 tetragonal oxo- or nitrido-metal complex in which $E_{TH}=0$. What are the Δ_{π} values for high- and low-spin forms?
- c. Assume that you have a high-spin/low-spin equilibrium in a d^3 tetragonal oxo- and nitrido-metal complex in which $E_{TH}=0$. What are the Δ_{π} values for high- and low-spin forms?
- d. What are the relative populations of the high- and low-spin states in problems (b) and (c)?
- e. Karl Wieghardt reported (*Angew. Chem. Int. Ed.* **2005**, *44*, 2908-2912) that, *unexpectedly*, the ground-state total spin of the [(cyclam-acetato)Fe^V(N)]⁺ core is S=1/2 and not S=3/2. Discuss whether you think that this result is "unexpected".