
 

 

Problem Set 5 
Ch 153a – Winter 2025 
Due: 14 February 2025 

1. (5 points) The three ferric hexacyanometallates, Prussian blue, ruthenium purple, and 
osmium purple (Fe4[M(CN)6]3•xH2O, M = Fe, Ru, Os) are prepared by mixing solutions of the 
corresponding hexacyanometallates with a ferric perchlorate solution.  The general 
structure of the three compounds is shown below.   

 

 

The absorption spectra (next page) of the hexacyano-metallates are shown in the upper 
panel, and the spectra of the ferric-hexacyano-metallates appear in the lower panel. 



 

 

 

Propose assignments for the absorption bands in the ferric-hexacyano-metallates spectra.  
Explain your reasoning. 

 

2. (15 points) The intensity of an intervalence charge transfer (IVCT) absorption band is related 
to the strength of the electronic coupling between the electron donor and acceptor. In this 
problem, you will derive the following expression for the square of the transition moment 
integral ( 2

12µ
 ) for IVCT absorption:  



 

 

where HDA is an electronic coupling matrix element, e(esu = statC = erg1/2 cm1/2) is the unit 
electronic charge, dDA is the donor-acceptor distance, ( )sec−ergh ) is Planck’s constant, 
c(cm sec−1) is the speed of light, and ( )1

max cm−ν  is the frequency in wavenumbers of the 

IVCT absorbance maximum.  

Assume that you have an electron donor in close proximity to an electron acceptor (D|A).  
We will consider just the ground state (D|A) and a charge-transfer excited state (D+|A−).  
We can define zero-order wavefunctions for the two states: 

The function Dφ  is the HOMO on D; −φA
 is the LUMO on A; +ΘD

 describes the core 

electrons on D+; and AΘ  is the function for the core electrons on A.  We assume that ψg and 

ψe are real, normalized, 

and orthogonal, 

If D and A interact weakly with one another, the wave functions will be perturbed slightly: 

The transition moment integral for the G→E excitation is given by: 

a. Derive an expression for GEµ


 as a function of e, α, β, the average positions of electrons 
in orbitals 2 through n ( niri 


2, = ), the average position of an electron in Dφ              
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b. The Hamiltonian for the perturbed system is H = Ho + H1, and the following equations 
are assumed to be valid: 

;; oo eeeggg HH ψε=ψψε=ψ  

∫ τψψ+ε≈ε′+ε=Ψ=Ψ dHEEH gggggGGGG 1;  

∫ τψψ+ε≈ε′+ε=Ψ=Ψ dHEEH eeeeeEEEE 1;  

Substitute for H, ΨG, and EG in the Schrödinger equation, left-multiply by ψe, then 
integrate over all space to obtain an expression for α in terms of EE, EG, and 

∫∫ τψψ=τψψ≡ dHdHH geegDA 11 . 

c. Substitute for H, ΨE, and EE in the Schrödinger equation, left-multiply by ψg, then 
integrate over all space to obtain an expression for β in terms of EE, EG, and HDA. 

d. Substitute your expressions for α and β into your result from part (a).  Compare this 
result to the expression for 2

12µ
  given above.  Explain what assumptions and/or 

approximations are necessary to make your expression for 2
GEµ
  match that for 2

12µ
 .  

Can you provide justifications for these assumptions and/or approximations? 

3. (15 points) Consider a collimated beam of light 
impinging on an absorbing sample of thickness dx 
and cross-sectional area ∆y∆z, as shown to the right.  
Assume that that incident beam has spectral 

irradiance .11
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The rate per wavenumber interval at which molecules in the sample volume are excited is 
given by: 

where ng is the concentration of molecules in the ground state; )~(νρ  is the radiant energy 
density per wavenumber interval; Bge is the Einstein coefficient for induced g→e 
absorption; and )~(νg  is an absorption band shape function obeying the normalization 

condition: .1~)~( =νν∫
+∞

∞−
dg  

a. Derive an expression for 
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12 in terms of ng, )~(νρ , ν~ , Bge, ),~(νg  

Planck’s constant ( ( )sec−ergh ) , and the speed of light, c.  Demonstrate that your 
result has the proper units. 

b. Beer’s law can be derived from the following differential equation, 
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g  where Ng is the molar concentration of ground-state molecules 

and )~(να  is a molar absorption coefficient.  You are probably more familiar with Beer’s 

law in the following form: .)~(
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c. Use the results from parts (a) and (b), and the relationship between the spectral 

irradiance and the energy density, ),~()~( νρ=ν cI  to derive an expression for 
ν
νε
~

)~(  as a 

function of Avogadro’s number ( 







mole
moleculesNA ), h, Bge, and ).~(νg  

d. The semi-classical formulation of the Franck-Condon principle for transitions from a 
harmonic ground-state surface to a harmonic excited state surface predicts a band 
shape of the form: 

where λ(erg) is the reorganization energy, E00(erg) is the energy difference between the 

minima of the two harmonic surfaces, 
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absolute temperature. If the band shape is narrow relative to ,~
geν then 
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ν
νε  Use this approximation, the result from part (c), and the )~(νg  

normalization condition to derive an expression for maxε  as a function of NA, h, Bge, c, λ, 
R, T, and .~

maxν   Your expression should not contain any explicit dependence on ν~  or 
).~(νg  

e. Use the semi-classical band shape function to derive an expression for ,~
2

1ν∆  the full 

width of the band at half-maximum, as a function of h, c, λ, R, and T. 

f. A Golden-Rule treatment of the g→e radiative transition probability defines Bge in terms 
of the transition moment integral, 12µ : 

Demonstrate that this expression gives the same units for Bge as those above. Use this 
expression and the results from parts (d) and (e) to express maxε  as a function of h, c, NA, 

12µ , ,~
maxν  and .~

2
1ν∆  

g. In Problem 2 you showed that a perturbation theory treatment of (intervalence) charge-
transfer absorption predicts that 12µ  will depend on the electronic coupling matrix 
element between donor and acceptor (HDA(erg)), the distance between donor and 
acceptor (dDA(cm)), and ,~

maxν  according to the expression: 

where e (esu = statC = erg1/2 cm1/2) is the unit electronic charge.  Use this definition to 
derive an expression for maxε  as a function of NA, h, c, e, dDA, HDA, ,~

2
1ν∆  and .~

maxν  

h. Evaluate the constants in your expression to derive the following result: 

εmax=
2.35×103HDA

2 dDA
2

∆ν�  ½ν�max
 

where dDA is expressed in Å units, and HDA, ,~
maxν  and 

2
1

~ν∆  are expressed in cm−1 units. 
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4. (5 points) Intervalence charge transfer absorption bands have been observed in a large 
number of complexes of the type: [(NH3)5RuL-LRu(NH3)5]5+; data for three of these are given 
in the following table. 

L-L r, Å Absmax, nm εmax, M−1cm−1 

 
11.3 1030 920 

 

11.3 890 165 

 
10.5 810 30 

For each complex, use the results from problem 3 to determine the value of HDA and  λ, and 
predict the full-width at half-maximum of the intervalence band.  Offer explanations for any 
trends that you observe in these parameters. 
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