
Problem Set 7

Ch 153a – Winter 2025

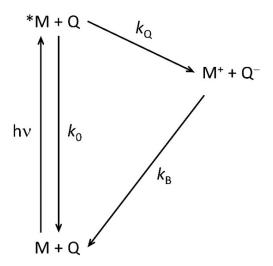
Due: 28 February 2025

1. Fox and coworkers (*Science* **1990**, *247*, 1069-1071) reported the kinetics of electron transfer in a series of Ir dimers of the following type:

A plot of the driving force dependence of the rates and a data table are show.

Table 2. Driving forces and rate constants for ET. Standard errors are 0.1 eV for $-\Delta G^{\circ}$ and $\pm 10\%$ for $k_{\rm ET}$, except where noted.

Donor	Acceptor	-ΔG° (eV)	$\binom{k_{\mathrm{ET}}}{(\mathrm{s}^{-1})}$
³ Ir ₂ *	2,4,6-Me ₃ py ⁺	0.08	3.5×10^{6}
$^{3}\text{Ir}_{2}^{\star}$	4-Mepy ⁺	0.21	1.7×10^{8}
¹ Ir ₂ *	2.4.6-Me ₂ py ⁺	0.58	2.7×10^{10}
¹ Ir ₂ *	4-Mepy ⁺	0.71	$5.0 \times 10^{10} *$
$^{1}\mathrm{Ir}_{2}^{\star}$	py ⁺	0.89	1.1×10^{11}
¹ Ir ₂ *	4-Phpy ⁺	0.97	$> 1.1 \times 10^{11}$
4-Phpy	Ir ₂ + 17	1.53	2.0×10^{10}
4-Mepv	Ir ₂ +	1.61	6.7×10^{9}
DV DV	Ir ₂ ⁺	1.79	3.3×10^{9}
³ Ir ₂ * ³ Ir ₂ * ¹ Ir ₂ * 4-Phpy 4-Mepy py 2,4,6-Mc ₃ py	4-Mepy ⁺ py ⁺ 4-Phpy ⁺ Ir ₂ ⁺ Ir ₂ ⁺ Ir ₂ ⁺ Ir ₂ ⁺	1.92	6.7×10^{7}


^{*±30%.}

Semiclassical electron-transfer theory predicts that intramolecular rates can be described by the following equation:

$$k_{ET} = \sqrt{\frac{4\pi^3}{h^2 \lambda RT}} H_{AB}^2 \exp \left\{ -\frac{(\Delta G^{\circ} + \lambda)^2}{4\lambda RT} \right\}$$

On the basis of the electron transfer rate data, what is the value of H_{AB} for this series of complexes? Predict the positions, extinction coefficients, and widths of the $Ir \rightarrow (R-py)^+$ charge transfer absorption bands for the four Ir compounds used in this study.

2. Photoinduced electron-transfer reactions that are relevant to photoredox catalysis are depicted in the following scheme:

Assume that immediately after excitation by a pulsed laser the concentration of the excited metal complex is $[*M]_0$ and that $[*M]_0 << [Q]$ for all quencher concentrations under consideration. In the absence of quencher *M decays back to M with rate constant k_0 , and *M reacts with the quencher with a rate constant k_Q .

- a. Derive a rate law for the time dependence of [*M].
- b. Solve the rate law to give an expression describing the time dependence of [*M].
- c. Derive an expression for the quantum yield of Q⁻ formation.
- d. Assume that k_0 can take on the values: $1 \times 10^9 \text{ s}^{-1}$; $1 \times 10^8 \text{ s}^{-1}$; $1 \times 10^7 \text{ s}^{-1}$; $1 \times 10^6 \text{ s}^{-1}$. Assume also that k_Q can take on the values: $1 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$; $1 \times 10^8 \text{ M}^{-1}\text{s}^{-1}$; $1 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$. Find the quencher concentration required to give 90% quantum yield of [Q⁻] for all twelve pairs of k_0 and k_Q rate constants.
- e. If the quenching reaction yields a product concentration of $[Q^-]_{\infty}$, derive an expression for the half-time of the reaction to regenerate M and Q.