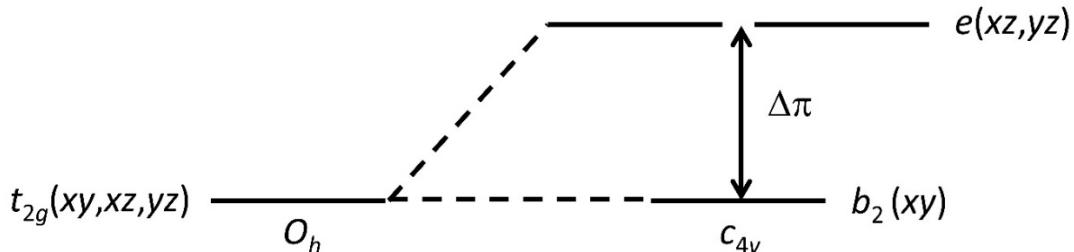


**Problem Set 0**


**Ch153a – Winter 2026**

**Due: 9 January 2026**

1. (10 points) Consider the tetragonal oxo complex,  $[L_5MO]^{n+}$  (L is an uncharged ligand, for example,  $H_2O$  or  $NH_3$ ).
  - Construct an MO diagram for  $[L_5MO]^{n+}$  using the following orbitals in the  $C_{4v}$  point group: five metal 3d orbitals, one set of five ligand  $\sigma$  orbitals, and the oxo  $\sigma + 2p\pi$  orbitals.
  - Predict the ground state electronic configuration and the metal-oxo bond order for each of the following:

|                 |           |       |
|-----------------|-----------|-------|
| $[L_5VO]^{2+}$  | $V^{IV}$  | $d^1$ |
| $[L_5CrO]^{3+}$ | $Cr^{V}$  | $d^1$ |
| $[L_5CrO]^{2+}$ | $Cr^{IV}$ | $d^2$ |
| $[L_5MnO]^{3+}$ | $Mn^{V}$  | $d^2$ |
| $[L_5MnO]^{2+}$ | $Mn^{IV}$ | $d^3$ |
| $[L_5FeO]^{2+}$ | $Fe^{IV}$ | $d^4$ |

- c. Do you think that  $[L_5CoO]^{2+}$  is a stable complex? Why or why not?
2. (10 points) Electronic Structure and Spectra of Metal Nitrido Complexes



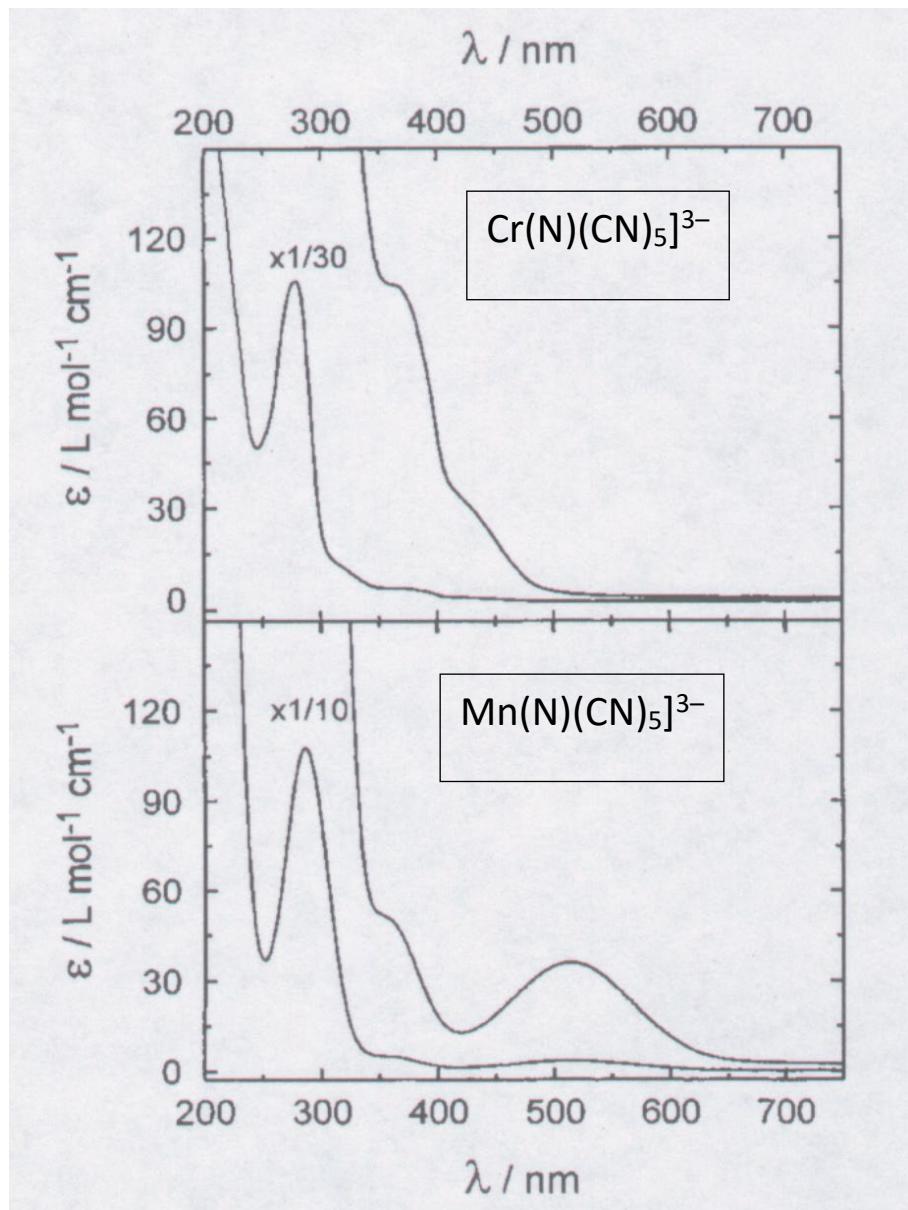
The  $d\pi$ -orbital splitting for a tetragonal nitrido-metal complex is shown above.

The following states arise from the  $d^1$  and  $d^2$  configurations in this scheme:

$d^1$ :

|                   |                 |
|-------------------|-----------------|
| $^2E[(xz, yz)^1]$ | $E = \Delta\pi$ |
| $^2B_2[(xy)^1]$   | $E = 0$         |

$d^2$ :


|                         |                                |
|-------------------------|--------------------------------|
| $^3A_2[(xz, yz)^2]$     | $E = 2\Delta\pi + A - 5B$      |
| $^1A_1[(xz, yz)^2]$     | $E = 2\Delta\pi + A + 7B + 4C$ |
| $^1B_1[(xz, yz)^2]$     | $E = 2\Delta\pi + A + B + 2C$  |
| $^1B_2[(xz, yz)^2]$     | $E = 2\Delta\pi + A + B + 2C$  |
| $^1E[(xy)^1(xz, yz)^1]$ | $E = \Delta\pi + A + B + 2C$   |
| $^3E[(xy)^1(xz, yz)^1]$ | $E = \Delta\pi + A - 5B$       |
| $^1A_1[(xy)^2]$         | $E = A + 4B + 3C$              |

The absorption spectra of  $\text{Cr}^{\text{V}}(\text{N})(\text{CN})_5^{3-}$  and  $\text{Mn}^{\text{V}}(\text{N})(\text{CN})_5^{3-}$  are shown below.

In  $\text{Cr}^{\text{V}}(\text{N})(\text{CN})_5^{3-}$ , the lowest energy spin-allowed absorption band is at  $23,300 \text{ cm}^{-1}$ .

In  $\text{Mn}^{\text{V}}(\text{N})(\text{CN})_5^{3-}$ , the lowest energy spin-allowed absorption band is at  $19,400 \text{ cm}^{-1}$ .

- Provide an assignment for the lowest energy spin-allowed absorption band in each complex.
- Use the foregoing orbital splitting diagram and the state energies to determine the values of  $\Delta_{\pi}$  in the Cr and Mn complexes. Assume that  $B = 500 \text{ cm}^{-1}$  and  $C/B = 4$ .

