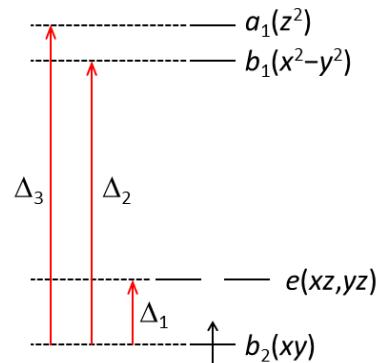


Problem Set 3

Ch153a – Winter 2026


Due: 30 January 2026

1. (10 points) Consider the ligand field energy diagram for a tetragonal d^1 metal-oxo complex. The two zero-order ground-state wave functions for this system are:

$$|\psi_A^{(0)}\rangle = |xy\rangle|\alpha\rangle$$

$$|\psi_B^{(0)}\rangle = |xy\rangle|\beta\rangle$$

where $|\alpha\rangle$ is the $m_S = +1/2$ spin function and $|\beta\rangle$ is the $m_S = -1/2$ spin function. The spin-orbit coupling operator, $\hat{H}_{SO} = \lambda \hat{\mathbf{L}} \cdot \hat{\mathbf{S}}$ mixes the real d -orbitals.

The orbital angular momentum operators act on the d -orbitals according to the following table (the unit of angular momentum, \hbar , is taken to be equal to 1):

d -orbital	\hat{L}_x	\hat{L}_y	\hat{L}_z
$ x^2 - y^2\rangle$	$-i yz\rangle$	$-i xz\rangle$	$2i xy\rangle$
$ z^2\rangle$	$-i\sqrt{3} yz\rangle$	$i\sqrt{3} xz\rangle$	0
$ xy\rangle$	$i xz\rangle$	$-i yz\rangle$	$-2i x^2 - y^2\rangle$
$ xz\rangle$	$-i xy\rangle$	$i x^2 - y^2\rangle - i\sqrt{3} z^2\rangle$	$i yz\rangle$
$ yz\rangle$	$i x^2 - y^2\rangle + i\sqrt{3} z^2\rangle$	$i xy\rangle$	$-i xz\rangle$

The spin angular momentum operators act on the d -orbitals according to the following table (the unit of angular momentum, \hbar , is taken to be equal to 1):

	\hat{S}_x	\hat{S}_y	\hat{S}_z
$ \alpha\rangle$	$\frac{1}{2} \beta\rangle$	$\frac{i}{2} \beta\rangle$	$\frac{1}{2} \alpha\rangle$
$ \beta\rangle$	$\frac{1}{2} \alpha\rangle$	$-\frac{i}{2} \alpha\rangle$	$-\frac{1}{2} \beta\rangle$

Perturbation theory gives the first order correction to the wavefunction as:

$$|\Psi_k\rangle = |\Psi_k^{(0)}\rangle - \sum_i' \frac{\langle \Psi_i^{(0)} | \hat{H}_{SO} | \Psi_k^{(0)} \rangle}{(E_i^{(0)} - E_k^{(0)})} |\Psi_i^{(0)}\rangle$$

Find expressions for the ground-state wave functions corrected to first order, $|\Psi_A\rangle$ and $|\Psi_B\rangle$, (the energy gaps, taken to be positive, are defined in the energy level diagram and the summation runs over the other d-orbital wavefunctions, excluding $|\Psi_A^{(0)}\rangle$ and $|\Psi_B^{(0)}\rangle$).

2. (20 points) The Zeeman operator has the following form:

$$\hat{H}_Z = \beta_e \vec{B} \cdot (\hat{\mathbf{L}} + g_e \hat{\mathbf{S}})$$

- Write down the secular determinant using the first order wavefunctions from problem 1 and the Zeeman operator assuming that $\vec{B} = \mathbf{B}_z$. That is, the magnetic field is parallel to the molecular z-axis. Solve the determinant to get the two eigenvalues in terms of β_e , \mathbf{B}_z , g_e , λ , and any energy gaps (Δ_1 , Δ_2 , or Δ_3). Only retain terms to the first power of the ratio (λ/Δ). What is the energy of an EPR transition with this magnetic field orientation?
- Write down the secular determinant using the first order wavefunctions from problem 1 and the Zeeman operator assuming that $\vec{B} = \mathbf{B}_x$. That is, the magnetic field is parallel to the molecular x-axis. Solve the determinant to get the two eigenvalues in terms of β_e , \mathbf{B}_z , g_e , λ , and any energy gaps (Δ_1 , Δ_2 , or Δ_3). Only retain terms to the first power of the ratio (λ/Δ). What is the energy of an EPR transition with this magnetic field orientation?